π Tentukan Himpunan Penyelesaian Dari Setiap Persamaan Eksponen Berikut
Tentukanhimpunan penyelesaian setiap persamaan eksponens Tanya 10 SMA Matematika ALJABAR Tentukan himpunan penyelesaian setiap persamaan eksponensial berikut. (5x-2)^ (x-5)= (5x-2)^ (2x+1) Persamaan Eskponen Grafik, Persamaan, dan Pertidaksamaan Eksponen dan Logaritma ALJABAR Matematika Rekomendasi video solusi lainnya 01:40
Penyelesaiandari suatu persamaan eksponen dalam peubah x adalah semua nilai x yang memenuhi persamaan eksponen tersebut atau dengan kata lain, nilai-nilai x yang menyebabkan persamaan eksponen tersebut bernilai benar. Berikut bentuk-bentuk persamaan eksponen beserta sifat-sifat yang digunakan dalam menentukan solusinya. A. Bentuk af (x) = ag (x)
Contoh2 Tentukan persamaan dari 3 4x-2 = 5 2x-1 Jawab : Kedua bilangan basis atau pokok di atas berbeda, maka bisa dengan menyamakan pangkatnya menjadi : 3 4x-8 = 5 2x-4 3 4(x-2) = 5 2(x-2) 81 x-2 = 25 x-2 Kemudian gunakan bentuk persamaan di atas. x - 2 = 0 x = 2 Jadi, jawabannya adalah x = 2. 3. Persamaan Eksponensial Berbentuk a f(x) = b g(x). Merupakan bentuk persamaan eksponensial yang
Himpunanpenyelesaian persamaan cos 2x - sin x = 0 untuk 0 β€ x β€ 2Ο adalah . A. Ο / 2, Ο
Persamaanbentuk eksponen sederhana dijumpai dalam tiga bentuk berikut. Untuk $a \in$ himpunan bilangan real tak nol, selalu berlaku: Jika $a^{f(x)} = a^p$, maka $f(x) = p$. Jika $a^{f(x)} = a^{g(x)}$, maka $f(x) = g(x)$. Jika $(f(x))^{a} = (g(x))^{a}$, maka ada sejumlah kemungkinan yang menjadi penyelesaian persamaan, yakni
JawabanLangkah awal yang harus dilakukan adalah dengan menyamakan bilangan pokok kedua ruas. 2 2x-7 = 8 1-x 2 2x-7 = (2 3) 1-x 2 2x-7 = 2 3-3x Karena bilangan pokoknya sudah sama maka dapat diperoleh sebagai berikut 2x - 7 = 3 - 3x 5x = 10 x = 2 Jadi penyelesaiannya yaitu x = 2 B. Bentuk Persamaan af (x) = bf (x)
Carihimpunan penyelesaian dari persamaan eksponen 3 2x 2 8 3 x 1 0 jawab. Secara umum persamaan eksponen dibagi menjadi tiga jenis yakni persamaan eksponen berbasis konstanta persamaan eksponen berbasis fungsi dan juga persamaan eksponen dalam bentuk penjumlahan. Dalam tayangan hari ini siswa sma dan smk belajar mengenai persamaan eksponen.
Jawaban#1 untuk Soal: Tentukan himpunan penyelesaian dari setiap persamaan eksponen berikut. Jawab: Penjelasan dengan langkah-langkah: Maaf kalo salah ββββββ Nah itulah solusi mengenai Tentukan himpunan penyelesaian dari setiap persamaan eksponen berikut., saja dengan solusi tadi bisa membantu memecahkan soal sobat. Jika teman
Tandapertidaksamaan eksponen tergantung dari bilangan pokok (basis) persamaan eksponen dan tanda awalnya. Contoh Soal Tentukan himpunan penyelesaian 2 x + 2 > 16 x-2. Jawab: 2 x + 2 > 16 x-2 2 x + 2 > 2 4 ( x-2 ) x + 2 > 4 ( x - 2) x + 2 > 4x - 8 3x < 10 x < 10/3 Jadi, himpunan penyelesaiannya adalah HP = { x | x < 10/3, x β R}
. b. Diketahui persamaan . Ingat bahwa, jika , penyelesaian dari persamaan tersebut sebagai berikut. , dengan syarat dan positif , dengan syarat dan keduanya genap atau keduanya ganjil Misal, , , dan , penyelesaian dari sebagai berikut. atau Lalu, cek nilai dan dengan mensubstitusikan pada fungsi dan sebagai berikut. Berdasarkan uraian di atas, negatif syarat tidak terpenuhi, maka bukan penyelesaian Lalu, cek nilai dan dengan mensubstitusikan pada fungsi dan sebagai berikut. Berdasarkan uraian di atas, dan genap syarat terpenuhi, maka merupakan penyelesaian. Dengan demikian, himpunan penyelesaian persamaan adalah .
Persamaan bentuk eksponen sederhana dijumpai dalam tiga bentuk berikut. Untuk $a \in$ himpunan bilangan real tak nol, selalu berlaku Jika $a^{fx} = a^p$, maka $fx = p$. Jika $a^{fx} = a^{gx}$, maka $fx = gx$. Jika $fx^{a} = gx^{a}$, maka ada sejumlah kemungkinan yang menjadi penyelesaian persamaan, yakni $$\begin{cases} fx = gx & 1 \\ fx = -gx~\text{dengan syarat}~a~\text{genap} & 2 \end{cases}$$ Today Quote Your cell phone has already replaced your watch, camera, calendar and alarm clock. Donβt let it replace your lovely family. Contoh 1 Tentukan nilai $x$ yang memenuhi persamaan a. $7^x = 49$ b. $3^{-x} = 81$ c. $8^x = \sqrt2$ d. $3^{2x-1} = \dfrac{1}{27}$ Pembahasan Semua persamaan tersebut berbentuk $a^{fx} = a^p$ yang memiliki penyelesaian dari persamaan $fx = p$. Jawaban a $7^x = 49 \Leftrightarrow 7^x = 7^2 \Rightarrow \therefore x = 2$ Jawaban b $\begin{aligned} 3^{-x} & = 81 \\ 3^{-x} & = 3^4 \\ -x & = 4 \\ \therefore x & = -4 \end{aligned}$ Jawaban c $\begin{aligned} 8^x & = \sqrt2 \\ 2^3^x & = 2^{\frac12} \\ 2^{3x} & = 2^{\frac12} \\ 3x & = \dfrac12 \\ \therefore x & = \dfrac16 \end{aligned}$ Jawaban d $\begin{aligned} 3^{2x-1} & = \dfrac{1}{27} \\ 3^{2x-1} & = 3^{-3} \\ 2x-1 & = -3 \\ 2x & = -2 \\ \therefore x & = -1 \end{aligned}$ Contoh 2 Tentukan penyelesaian dari setiap persamaan berikut. a. $9^{3x-4} = \dfrac{1}{81^{2x-5}}$ b. $4^{1+2x} \cdot 3^{4x+1} = 432$ Pembahasan Semua persamaan tersebut berbentuk $a^{fx} = a^{gx}$ yang memiliki penyelesaian dari persamaan $fx = gx$. Jawaban a $\begin{aligned} 9^{3x-4} & = \dfrac{1}{81^{2x-5}} \\ 9^{3x-4} & = 81^{5-2x} \\ 9^{3x-4} & = 9^2^{5-2x} \\ 9^{3x-4} & = 9^{10-4x} \\ \Rightarrow 3x-4 & = 10-4x \\ 3x+4x & = 10+4 \\ 7x & = 14 \\ x & = 2 \end{aligned}$ Jadi, penyelesaian persamaan ini adalah $\boxed{x=2}$ Jawaban b $\begin{aligned} 4^{1+2x} \cdot 3^{4x+1} & = 432 \\ 4^1 \cdot 4^{2x} \cdot 3^{4x} \cdot 3^1 & = 432 \\ 4^{2x} \cdot 3^2^{2x} & = \dfrac{432}{4 \cdot 3} \\ 4^{2x} \cdot 9^{2x} & = 36 \\ 36^{2x} & = 36 \\ \Rightarrow 2x & = 1 \\ x & = \dfrac12 \end{aligned}$ Jadi, penyelesaian persamaan ini adalah $\boxed{x=\dfrac12}$ Agar lebih memahami submateri ini, berikut disajikan soal-soal beserta pembahasannya yang super lengkap. Semoga bermanfaat, ya! Baca Soal dan Pembahasan β Pangkat, Akar, dan Logaritma Soal Nomor 1 Nilai $x$ yang memenuhi persamaan $2^{x+1} = 8$ adalah $\cdots \cdot$ A. $2$ C. $0$ E. $-2$ B. $1$ D. $-1$ Pembahasan Persamaan di atas berbentuk $a^{fx} = a^p$ yang berarti $fx = p$. $\begin{aligned} 2^{x+1} & = 8 \\ 2^{x+1} & = 2^3 \\ \Rightarrow x+1 & = 3 \\ x & = 2 \end{aligned}$ Jadi, nilai $x$ yang memenuhi persamaan tersebut adalah $\boxed{x=2}$ Jawaban A [collapse] Soal Nomor 2 Nilai $x$ yang memenuhi persamaan $3^{2-x} = 27$ adalah $\cdots \cdot$ A. $2$ C. $0$ E. $-2$ B. $1$ D. $-1$ Pembahasan Persamaan di atas berbentuk $a^{fx} = a^p$ yang berarti $fx = p$. $\begin{aligned} 3^{2-x} & = 27 \\ 3^{2-x} & = 3^3 \\ \Rightarrow 2-x & = 3 \\ x & = -1 \end{aligned}$ Jadi, nilai $x$ yang memenuhi persamaan tersebut adalah $\boxed{x=-1}$ Jawaban D [collapse] Soal Nomor 3 Himpunan penyelesaian dari persamaan $2^x = \dfrac{1}{32}$ adalah $\cdots \cdot$ A. $\{-5\}$ C. $\{0\}$ E. $\{5\}$ B. $\{-3\}$ D. $\{3\}$ Pembahasan Persamaan di atas berbentuk $a^{fx} = a^p$ yang berarti $fx = p$. $\begin{aligned} 2^{x} & = \dfrac{1}{32} \\ 2^{x} & = 2^{-5} \\ \Rightarrow x & = -5 \end{aligned}$ Jadi, himpunan penyelesaian dari persamaan tersebut adalah $\boxed{\{-5\}}$ Jawaban A [collapse] Soal Nomor 4 Penyelesaian dari persamaan $4^{x+1} = 128$ adalah $\cdots \cdot$ A. $x=1,5$ D. $x=3,0$ B. $x=2,0$ E. $x=3,5$ C. $x=2,5$ Pembahasan Persamaan di atas berbentuk $a^{fx} = a^p$ yang berarti $fx = p$. $\begin{aligned} 4^{x+1} & = 128 \\ 2^2^{x+1} & = 2^7 \\ 2^{2x+2} & = 2^7 \\ \Rightarrow 2x+2 & = 7 \\ 2x & = 5 \\ x & = \dfrac52 = 2,5 \end{aligned}$ Jadi, penyelesaian persamaan tersebut adalah $\boxed{x=2,5}$ Jawaban C [collapse] Soal Nomor 5 Nilai $x$ yang memenuhi persamaan $5^{4+x} = 0,2^x$ adalah $\cdots \cdot$ A. $-5$ C. $-3$ E. $2$ B. $-4$ D. $-2$ Pembahasan Persamaan di atas berbentuk $a^{fx} = a^p$ yang berarti $fx = p$. $\begin{aligned} 5^{4+x} & = 0,2^x \\ 5^{4+x} & = \left\dfrac15\right^x \\ 5^{4+x} & = 5^{-x} \\ \Rightarrow 4+x & = -x \\ 2x & = -4 \\ x & = -2 \end{aligned}$ Jadi, nilai $x$ yang memenuhi persamaan tersebut adalah $\boxed{x=-2}$ Jawaban D [collapse] Baca Soal dan Pembahasan β Fungsi Eksponen Pangkat Soal Nomor 6 Nilai $x$ yang memenuhi persamaan $\left\dfrac25\right^{\frac12} = \left\dfrac52\right^{x+1}$ adalah $\cdots \cdot$ A. $\dfrac32$ C. $0$ E. $-\dfrac32$ B. $\dfrac12$ D. $-\dfrac12$ Pembahasan Persamaan di atas berbentuk $a^{fx} = a^p$ yang berarti $fx = p$. $\begin{aligned} \left\dfrac25\right^{\frac12} & = \left\dfrac52\right^{x+1} \\ \left\dfrac25\right^{\frac12} & = \left\dfrac25\right^{-x-1} \\ \Rightarrow \dfrac12 & = -x-1 \\ \dfrac32 & = -x \\ x & = -\dfrac32 \end{aligned}$ Jadi, nilai $x$ yang memenuhi persamaan tersebut adalah $\boxed{x=-\dfrac32}$ Jawaban E [collapse] Soal Nomor 7 Persamaan yang ekuivalen dengan persamaan $8^x = 2^{y+1}$ adalah $\cdots \cdot$ A. $3x-y-1=0$ B. $3x-y+1=0$ C. $3x+y-1=0$ D. $x-3y-1=0$ E. $x+3y-1=0$ Pembahasan Persamaan di atas berbentuk $a^{fx} = a^{gx}$ yang berarti $fx = gx.$ $\begin{aligned} 8^x & = 2^{y+1} \\ 2^{3x} & = 2^{y+1} \\ \Rightarrow 3x & = y+1 \\ 3x-y-1 & = 0 \end{aligned}$ Jadi, persamaan yang ekuivalen dengan persamaan tersebut adalah $\boxed{3x-y-1=0}$ Jawaban A [collapse] Soal Nomor 8 Persamaan kuadrat yang ekuivalen dengan persamaan $3^{x^2-5x-3} = 27$ adalah $\cdots \cdot$ A. $x^2-5x-3=0$ B. $x^2-5x-6=0$ C. $x^2-5x=0$ D. $x^2+5x-6=0$ E. $x^2+5x-3=0$ Pembahasan Persamaan di atas berbentuk $a^{fx} = a^p$ yang berarti $fx = p$. $\begin{aligned} 3^{x^2-5x-3} & = 27 \\ 3^{x^2-5x-3} & = 3^3 \\ \Rightarrow x^2-5x-3 & = 3 \\ x^2-5x-6 & = 0 \end{aligned}$ Jadi, persamaan yang ekuivalen dengan persamaan tersebut adalah $\boxed{x^2-5x-6=0}$ Jawaban B [collapse] Soal Nomor 9 Penyelesaian dari persamaan $2^{3x-2} = \left\dfrac14\right^{x-9}$ adalah $\cdots \cdot$ A. $x=-4$ D. $x=2$ B. $x=-2$ E. $x=4$ C. $x=0$ Pembahasan Persamaan di atas berbentuk $a^{fx} = a^{gx}$ yang berarti $fx = gx.$ $\begin{aligned} 2^{3x-2} & =\left\dfrac14\right^{x-9} \\ 2^{3x-2} & = 2^{-2}^{x-9} \\ 2^{3x-2} & = 2^{-2x+18} \\ \Rightarrow 3x-2 & = -2x+18 \\ 3x+2x & = 18+2 \\ 5x & = 20 \\ x & = 4 \end{aligned}$ Jadi, penyelesaian dari persamaan tersebut adalah $\boxed{x=4}$ Jawaban E [collapse] Soal Nomor 10 Nilai $x$ yang memenuhi persamaan $4^{2x-3} + 16^{x-1} = \dfrac{5}{64}$ adalah $\cdots \cdot$ A. $-4$ C. $0$ E. $4$ B. $-2$ D. $2$ Pembahasan Persamaan di atas dapat disederhanakan sehingga memunculkan bentuk $a^{fx} = a^p$. $\begin{aligned} 4^{2x-3} + 16^{x-1} & = \dfrac{5}{64} \\ 4^{2x-3} + 4^2^{x-1} & = \dfrac{5}{4^3} \\ 4^{2x-3} + 4^{2x-2} & = 5 \cdot 4^{-3} \\ 4^{2x} \cdot 4^{-3} + 4^{2x} \cdot 4^{-2} & = 5 \cdot 4^{-3} \\ \text{Kali}~4^{3}~\text{pada kedua}~&\text{ruas} \\ 4^{2x} + 4^{2x} \cdot 4 & = 5 \\ 1+4 \cdot 4^{2x} & = 5 \\ 5 \cdot 4^{2x} & = 5 \\ 4^{2x} & = 1 \\ 4^{2x} & = 4^0 \\ \Rightarrow 2x & = 0 \\ x & = 0 \end{aligned}$ Jadi, nilai $x$ yang memenuhi persamaan tersebut adalah $\boxed{x=0}$ Jawaban C [collapse] Soal Nomor 11 Nilai $n$ yang memenuhi persamaan $\left\{\left\dfrac{1}{25}\right^{2n+6}\right\}^{\frac16} = 5^{-4}$ adalah $\cdots \cdot$ A. $1$ C. $5$ E. $9$ B. $3$ D. $7$ Pembahasan Persamaan di atas berbentuk $a^{fn} = a^p$ yang berarti $fn = p.$ $\begin{aligned} \left\{\left\dfrac{1}{25}\right^{2n+6}\right\}^{\frac16} & = 5^{-4} \\ \left\{5^{-2}^{2n+6}\right\}^{\frac16} & = 5^{-4} \\ 5^{-22n+6\left\frac{1}{6}\right} & = 5^{-4} \\ 5^{-\frac{2n+6}{3}} & = 5^{-4} \\ \Rightarrow -\dfrac{2n+6}{3} & = -4 \\ -2n+6 & = -12 \\ 2n+6 & = 12 \\ 2n & = 6 \\ n & = 3 \end{aligned}$ Jadi, nilai $n$ yang memenuhi persamaan tersebut adalah $\boxed{n=3}$ Jawaban B [collapse] Soal Nomor 12 Nilai $x$ yang memenuhi persamaan $25^{x^2-5x+7} = \left\dfrac{1}{25}\right^{x-x^2-15}$ adalah $\cdots \cdot$ A. $-6$ C. $-2$ E. $6$ B. $-4$ D. $4$ Pembahasan Persamaan di atas berbentuk $a^{fx} = a^{gx}$ yang berarti $fx = gx.$ $\begin{aligned} 25^{x^2-5x+7} & = \left\dfrac{1}{25}\right^{x-x^2-15} \\ 25^{x^2-5x+7} & = 25^{-1}^{x-x^2-15} \\ 25^{x^2-5x+7} & = {25}^{x^2-x+15} \\ \Rightarrow \cancel{x^2}-5x+7 & = \cancel{x^2}-x+15\\ -5x+x & = 15-7 \\ -4x & = 8 \\ x & = -2 \end{aligned}$ Jadi, nilai $x$ yang memenuhi persamaan tersebut adalah $\boxed{x=-2}$ Jawaban C [collapse] Soal Nomor 13 Himpunan penyelesaian dari persamaan $10^{2-3x} = 10^{5x-6}$ adalah $\cdots \cdot$ A. $\{~\}$ C. $\{1\}$ E. $\{1, 2\}$ B. $\{0\}$ D. $\{2\}$ Pembahasan Persamaan di atas berbentuk $a^{fx} = a^{gx}$ yang berarti $fx = gx.$ $\begin{aligned} 10^{2-3x} & = 10^{5x-6} \\ \Rightarrow 2-3x & = 5x-6 \\ -3x-5x & = -6-2 \\ -8x & = -8 \\ x & = 1 \end{aligned}$ Jadi, himpunan penyelesaian dari persamaan tersebut adalah $\boxed{\{1\}}$ Jawaban C [collapse] Soal Nomor 14 Penyelesaian persamaan $3^{2x+1}=81^{x-2}$ adalah $\cdots \cdot$ A. $0$ C. $4\dfrac12$ E. $16$ B. $4$ D. $6\dfrac12$ Pembahasan Persamaan tersebut berbentuk $a^{fx} = a^p$ yang memiliki penyelesaian dari persamaan $fx = p$. $\begin{aligned} 3^{2x+1} & =81^{x-2} \\ 3^{2x+1} & = 3^4^{x-2} \\ 3^{2x+1} & = 3^{4x-8} \\ \Rightarrow 2x+1 & = 4x-8 \\ 2x-4x & = -8-1 \\ -2x & = -9 \\ x & = \dfrac92 = 4\dfrac12 \end{aligned}$ Jadi, penyelesaian persamaan itu adalah $\boxed{4\dfrac12}$ Jawaban C [collapse] Soal Nomor 15 Jika $x$ memenuhi persamaan $\left\dfrac{1}{9^{2x}}\right^{\frac13} = \dfrac{27^x^2}{81^{x-2}}$, maka nilai $-5x$ sama dengan $\cdots \cdot$ A. $-12$ C. $0$ E. $12$ B. $-8$ D. $8$ Pembahasan Persamaan tersebut berbentuk $a^{fx} = a^p$ yang memiliki penyelesaian dari persamaan $fx = p$. $\begin{aligned} \left\dfrac{1}{9^{2x}}\right^{\frac13} & = \dfrac{27^x^2}{81^{x-2}} \\ 3^{-2}^{2x}^{\frac13} & = \dfrac{3^{6x}}{3^{4x-2}} \\ 3^{-\frac43x} & = 3^{6x-4x+8} \\ 3^{-\frac43x} & = 3^{2x+8} \\ \Rightarrow -\dfrac43x & = 2x + 8 \\ \text{Kali}~3&~\text{pada kedua ruas} \\ -4x & = 6x+24 \\ -10x & = 24 \\ -5x & = 12 \end{aligned}$ Jadi, nilai dari $\boxed{-5x = 12}$ Jawaban E [collapse] Soal Nomor 16 Nilai $x$ yang $\dfrac{\sqrt[3]{4^{5-x}}}{8} = \dfrac{1}{2^{2x+1}}$ adalah $\cdots \cdot$ A. $-4$ C. $-\dfrac12$ E. $2$ B. $-1$ D. $\dfrac14$ Pembahasan Persamaan tersebut berbentuk $a^{fx} = a^p$ yang memiliki penyelesaian dari persamaan $fx = p$. $\begin{aligned} \dfrac{\sqrt[3]{4^{5-x}}}{8} & = \dfrac{1}{2^{2x+1}} \\ \dfrac{\left2^2^{5-x}\right^{\frac13}}{2^3} & = 2^{-1}^{2x+1} \\ 2^{\frac235-x-3} & = 2^{-2x-1} \\ \Rightarrow \dfrac235-x-3 & = -2x-1 \\ \dfrac235-x & = -2x+2 \\ 25-x & = 3-2x+2 \\ 10-2x & = -6x+6 \\ -2x+6x & = 6-10 \\ 4x & = -4 \\ x & = -1 \end{aligned}$ Jadi, nilai $x$ yang memenuhi persamaan tersebut adalah $\boxed{x=-1}$ Jawaban B [collapse] Soal Nomor 17 Jumlah semua akar real dari persamaan $3^{2x^2-7x-7} = 9$ adalah $\cdots \cdot$ A. $1,5$ C. $3,5$ E. $5,5$ B. $2,5$ D. $4,5$ Pembahasan Persamaan di atas dapat diubah sehingga berbentuk $a^{fx} = a^p$ yang ekuivalen dengan $fx = p$. $\begin{aligned} 3^{2x^2-7x-7} & = 9 \\ 3^{2x^2-7x-7} & = 3^2 \\ \Rightarrow 2x^2-7x-7 & = 2 \\ \color{blue}{2}x^2\color{red}{-7}x\color{green}{-9} & = 0 \end{aligned}$ Kita peroleh sebuah persamaan kuadrat. Diskriminan persamaan kuadrat ini dapat dicari menggunakan rumus $D = \color{red}{b}^2-4\color{blue}{a}\color{green}{c}$. Kita dapatkan $\begin{aligned} D & = -7^2-42-9 \\ & = 49+72 \\ & = 121 > 0 \end{aligned}$ Karena diskriminannya bernilai lebih dari $0$, maka akar persamaan kuadratnya adalah dua bilangan real nyata berbeda. Tanpa pemfaktoran, kita dapat menentukan jumlah akar real dengan menggunakan rumus $\begin{aligned} x_1 + x_2 & = -\dfrac{\color{red}{b}}{\color{blue}{a}} \\ \Rightarrow x_1+x_2 & = -\dfrac{-7}{2} = 3,5 \end{aligned}$ Jadi, jumlah semua akar real dari persamaan eksponen di atas adalah $\boxed{3,5}$ Jawaban C [collapse] Soal Nomor 18 Nilai $x$ yang memenuhi persamaan $3^{2x+3}= \sqrt[3]{27^{x-5}}$ adalah $\cdots \cdot$ A. $-8$ C. $-4$ E. $8$ B. $-6$ D. $0$ Penyelesaian Dengan menggunakan sifat pangkat, diperoleh $\begin{aligned} 3^{2x+3} & = \sqrt[3]{3^3^{x-5}} \\ 3^{2x+3} & = 3^{3 \times x-5 \times \frac{1}{3}} \\ \cancel{3}^{2x+3} & = \cancel{3}^{x-5} \\ 2x + 3 & = x -5 \\ 2x β x & = -5 -3 \\ x & = -8 \end{aligned}$ Jadi, nilai $x$ yang memenuhi persamaan itu adalah $\boxed{x=-8}$ Jawaban A [collapse] Baca Soal dan Pembahasan β Persamaan Eksponen Lanjut Soal Nomor 19 Jika diketahui $3^{x+2} = 6^{x-1}$, maka nilai dari $2^x + 3^{\frac{6}{x-1}} = \cdots \cdot$ A. $58$ C. $54$ E. $50$ B. $56$ D. $52$ Penyelesaian Ubah bentuk pada masing-masing ruas sehingga mengandung $3^x.$ $\begin{aligned} 3^{x+2} & = 6^{x-1} \\ 9 \cdot 3^x & = \dfrac{1}{6} \cdot 2 \cdot 3^x \\ 54 \cdot \cancel{3^x} & = 2^x \cdot \cancel{3^x} \\ 2^x & = 54 && \bigstar \\ 2^x & = 2 \cdot 3^3 \\ 2^{x-1} & = 3^3 \\ 2^{2x-1} & = 3^6 \\ 2^2 & = 3^{\frac{6}{x-1}} && \bigstar \end{aligned}$ Dengan demikian, kita peroleh $\boxed{2^x + 3^{\frac{6}{x-1}} = 54 + 2^2 = 58}$ Jawaban A [collapse] Soal Nomor 20 Jika $x_1$ dan $x_2$ adalah penyelesaian persamaan $\left\dfrac49\right^{x^2-3}\left\dfrac{8}{27}\right^{1-x} = \dfrac32$, maka $x_1-x_2^2 = \cdots \cdot$ A. $\dfrac94$ C. $\dfrac{41}{4}$ E. $25$ B. $\dfrac{25}{4}$ D. $\dfrac{25}{2}$ Pembahasan Persamaan di atas dapat diubah sehingga berbentuk $a^{fx} = a^p$ yang ekuivalen dengan $fx = p$. $\begin{aligned} \left\dfrac49\right^{x^2-3}\left\dfrac{8}{27}\right^{1-x} & = \dfrac32 \\ \left\dfrac23\right^{2x^2-3}\left\dfrac{2}{3}\right^{31-x} & = \left\dfrac23\right^{-1} \\ \left\dfrac23\right^{2x^2-6}\left\dfrac{2}{3}\right^{3-3x} & = \left\dfrac23\right^{-1} \\ \left\dfrac23\right^{2x^2-6 + 3-3x} & = \left\dfrac23\right^{-1} \\ \left\dfrac23\right^{2x^2-3x-3} & = \left\dfrac23\right^{-1} \\ \Rightarrow 2x^2-3x-3 & = -1 \\ 2x^2-3x-2 & = 0 \\ 2x+1x-2 & = 0\end{aligned}$ Diperoleh dua akar, yaitu $2x+1 = 0 \Rightarrow x_1 = -\dfrac12$ $x-2=0 \Rightarrow x_2 =2$ Dengan demikian, $\begin{aligned} x_1-x_2^2 & = \left-\dfrac12-2\right^2 \\ & = \left\dfrac52\right^2 = \dfrac{25}{4} \end{aligned}$ Catatan Perhatikan bahwa $x_1-x_2^2 = x_2-x_1^2$, artinya hasilnya selalu sama meskipun nilai $x_1$ dan $x_2$ ditukar. Jawaban B [collapse] Baca Soal dan Pembahasan β Persamaan Logaritma Soal Nomor 21 Nilai $x$ yang memenuhi persamaan $5^3=x+2^3$ adalah $\cdots \cdot$ A. $5$ C. $1$ E. $-5$ B. $3$ D. $-3$ Pembahasan Persamaan di atas berbentuk $p^{a} = fx^a$ yang berarti $fx = p$ pangkatnya sama, basisnya berbeda. $\begin{aligned} 5^3 & = x+2^3 \\ \Rightarrow 5 & = x+2 \\ x & = 3 \end{aligned}$ Jadi, nilai $x$ yang memenuhi persamaan tersebut adalah $\boxed{x=3}$ Jawaban B [collapse] Soal Nomor 22 Jika $1-x^5 = 2x-1^5$, maka nilai $x$ sama dengan $\cdots \cdot$ A. $\dfrac23$ C. $\dfrac43$ E. $2$ B. $1$ D. $\dfrac53$ Pembahasan Persamaan di atas berbentuk $fx^{p} = gx^{p}$ yang berarti hanya memungkinkan bila $fx = gx$ karena $p = 5$ ganjil. $\begin{aligned} 1-x^5 & = 2x-1^5 \\ \Rightarrow 1-x & = 2x-1 \\ -x-2x & =-1-1 \\ -3x & = -2 \\ x & = \dfrac23 \end{aligned}$ Jadi, nilai $x$ adalah $\boxed{\dfrac23}$ Jawaban A [collapse] Soal Nomor 23 Penyelesaian persamaan $2x-1^8 = -2+x^8$ adalah $\cdots \cdot$ A. $x = -1$ saja B. $x = 0$ saja C. $x = 1$ saja D. $x = -1$ atau $x = 1$ E. $\text{tidak ada penyelesaian}$ Pembahasan Persamaan di atas berbentuk $fx^{p} = gx^{p}$ dengan $p$ genap sehingga ada dua kemungkinan penyelesaian, yaitu $fx = gx$ atau $fx = -gx$ Kondisi pertama $\begin{aligned} fx & = gx \\ 2x-1 & = -2+x \\ 2x-x &= -2+1 \\ x & = -1 \end{aligned}$ Kondisi kedua $\begin{aligned} fx & = -gx \\ 2x-1 & = -2+x \\ 2x-1 & = 2-x \\ 2x+x & = 2+1 \\ 3x & = 3 \\ x & = 1 \end{aligned}$ Jadi, penyelesaian persamaan tersebut adalah $\boxed{x=-1~\text{atau}~x=1}$ Jawaban D [collapse] Baca Juga Materi, Soal, dan Pembahasan β Pertumbuhan dan Peluruhan Soal Nomor 24 Diberikan bilangan bulat $a$ dan $b$ yang memenuhi $\begin{cases} 3^a & = 81^{b+2} \\ 125^b & = 5^{a-3} \end{cases}$ Nilai dari $ab$ adalah $\cdots \cdot$ A. $10$ C. $60$ E. $2018$ B. $29$ D. $64$ Pembahasan Sederhanakan masing-masing persamaan sehingga nantinya terbentuk sistem persamaan linear dua variabel SPLDV. $\begin{aligned} 3^a & = 81^{b+2} \\ 3^a & = 3^4^{b+2} \\ 3^a & = 3^{4b+8} \\ a & = 4b + 8 \\ a-4b & = 8 && \cdots 1 \end{aligned}$ $\begin{aligned} 125^b & = 5^{a-3} \\ 5^3^b & = 5^{a-3} \\ 5^{3b} & = 5^{a-3} \\ 3b & = a-3 \\ -a+3b & = -3 && \cdots 2 \end{aligned}$ Eliminasi $a$ dari persamaan $1$ dan $2$. $\begin{aligned} \! \begin{aligned} a-4b & =8 \\ -a+3b & = -3 \end{aligned} \\ \rule{ cm}{ + \\ \! \begin{aligned} -b & = 5 \\ b & = -5 \end{aligned} \end{aligned}$ Substitusi $b = -5$ pada persamaan $1$. $\begin{aligned} a-4\color{red}{b} & = 8 \\ \implies a-4-5 & = 8 \\ a+20 & = 8 \\ a & = -12 \end{aligned}$ Dengan demikian, nilai dari $\boxed{ab = -12-5 = 60}$ Jawaban C [collapse] Baca Juga Soal dan Pembahasan β Fungsi Logaritma Soal Nomor 25 Diketahui persamaan $$25^x + 25^x + 25^x + 25^x + 25^x = 5^{ Nilai $x$ yang memenuhi persamaan tersebut adalah $\cdots \cdot$ A. $ D. $ B. $ E. $ C. $ Pembahasan Gunakan sifat-sifat pangkat. $$\begin{aligned} \underbrace{25^x + 25^x + 25^x + 25^x + 25^x}_{\text{ada}~5} & = 5^{ \\ 5 \cdot 25^x & = 5^{ \\ 5^1 \cdot 5^2^x & = 5^{ \\ 5^{1+2x} & = 5^{ \\ \Rightarrow 1+2x & = \\ 2x & = \\ x & = \end{aligned}$$Jadi, nilai $x$ yang memenuhi persamaan tersebut adalah $\boxed{ Jawaban B [collapse] Soal Nomor 26 Jika $x$ adalah bilangan real positif yang memenuhi $\dfrac{\sqrt[3]{a^2} \sqrt{x}}{\sqrt{a\sqrt[3]{ab}}} = \sqrt{a\sqrt[3]{b^2}}$, maka $ax = \cdots \cdot$ A. $a^2$ C. $a^2b$ E. $a^2b^2$ B. $ab$ D. $ab^2$ Pembahasan Semua ekspresi pada persamaan tersebut berbentuk akar pangkatnya pecahan dan dapat dihilangkan dengan memangkatkan kedua ruas dengan $6$. Sebelumnya, kita dapat ubah bentuk akar menjadi pangkat dengan mengingat bahwa $\sqrt[n]{a^m} = a^{\frac{m}{n}}$. Untuk itu, diperoleh $\begin{aligned} \left\dfrac{\sqrt[3]{a^2} \sqrt{x}}{\sqrt{a\sqrt[3]{ab}}}\right^6 & = \left\sqrt{a\sqrt[3]{b^2}}\right^6 \\ \dfrac{a^{\frac23 \cdot 6} x^{\frac12 \cdot 6}}{a^{\frac12 \cdot 6} ab^{\frac13 \cdot \frac12 \cdot 6}} & = a^{\frac12 \cdot 6} b^{\frac23 \cdot \frac12 \cdot 6} \\ \dfrac{\cancel{a^4}x^3}{\cancel{a^3}\cancel{a}b} & = a^3b^2 \\ \dfrac{x^3}{b} & = a^3b^2 \\ x^3 & = a^3b^3 \\ x & = ab \end{aligned}$ Jadi, nilai $\boxed{ax = aab = a^2b}$ Jawaban C [collapse] Soal Nomor 27 Persamaan $64^x + 2^{x+6} = 2^{x+7}$ berlaku untuk $x = \cdots \cdot$ A. $\dfrac76$ C. $\dfrac54$ E. $\dfrac23$ B. $\dfrac65$ D. $\dfrac43$ Pembahasan Dengan menggunakan sifat dasar perpangkatan, kita peroleh $$\begin{aligned} 64^x + 2^{x+6} & = 2^{x+7} \\ 2^6^x & = 2^{x+7}-2^{x+6} \\ 2^{6x} & = 2^{x+6}2-1 \\ 2^{6x} & = 2^{x+6} \\ \Rightarrow 6x & = x+6 \\ 5x & = 6 \\ x & = \dfrac65 \end{aligned}$$Jadi, persamaan tersebut berlaku untuk $\boxed{x=\dfrac65}$ Jawaban B [collapse] Baca Soal dan Pembahasan β Pangkat, Akar, dan Logaritma Versi HOTS dan Olimpiade Soal Nomor 28 Jika $a$ dan $b$ bilangan bulat positif yang memenuhi $a^b = 2^{20}-2^{19}$, maka nilai $a+b = \cdots \cdot$ A. $3$ C. $19$ E. $23$ B. $7$ D. $21$ Pembahasan Dengan menggunakan sifat pangkat dan sifat distributif, kita peroleh $$\begin{aligned} a^b & = 2^{19} \cdot 2-2^{19} \\ & = 2^{19}2-1 \\ & = 2^{19} \end{aligned}$$Dari sini, kita peroleh $a = 2$ dan $b = 19$ sehingga $\boxed{a+b=2+19=21}$ Jawaban D [collapse]
Jawaban yang benar adalah {2, 3, 4}Ingat pada persamaan eksponen fx^gx = fx^hxberlaku i gx = hxii fx = 1iii fx = -1 dengan syarat gx dan hx keduanya genap atau keduanya ganjiliv fx = 0 dengan syarat gx dan hx positifPersamaan axΓΒ² + bx + c = 0 tidak memiliki penyelesaian jika bΓΒ² Γ’β¬β 4ac 0h3 = 3ΓΒ²+3Γ’Λβ5 = 9 + 3 Γ’β¬β 5 = 7 > 0Karema g3 dan h3 keduanya positif, maka x = 3 merupakan penyelesaian persamaan tersebut. Jadi himpunan penyelesaian persamaan tersebut adalah {2, 3, 4}
tentukan himpunan penyelesaian dari setiap persamaan eksponen berikut